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The general formulation of quantum mechanics based on the concept of effect 
and operation is briefly recalled and the problem of the consistency of the shift 
of the borderline between object and observer is discussed. The formalism for 
the continuous observations based on the concept of an operation-valued 
stochastic process is also reviewed and it is shown on a simple model how it can 
be applied to an objective macroscopic description of a system of many 
particles. The relevance to the problem of the interpretation of quantum 
mechanics is discussed, but difficulties related to the conservation laws and to a 
relativistic extension are also pointed out. 

1. I N T R O D U C T I O N  

In this pape r  I wish to review briefly the general fo rmula t ion  of  
q u a n t u m  mechanics  based on the concepts  o f  effect and operation (Ludwig,  
1982; Kraus ,  1983; Davies,  1976; Holevo,  1982a) to stress tha t  it solves in 
precise ma themat i ca l  terms the p rob l em o f  the consistency of  the shift o f  
the demarca t ion  line between objects and appa ra tus  as fo rmula ted  by von 
N e u m a n n  (1955). The  impor t an t  fact is tha t  such solution is obta ined  
wi thout  the unna tu ra l  and  unsat isfactory assumpt ions  on the working  o f  
the appa ra tu s  tha t  are usually adop ted  in a different context.  I shall also 
recall how the collapse of  the wave funct ion can be natural ly  unders tood  in 
the same perspective.  

Then  I shall discuss the formal i sm o f  the continuous observations in 
q u a n t u m  mechanics  (Barchielli  et al., 1982, 1983, 1984; Barchielli and  
Lupieri,  1985, 1986; Davies,  1969, 1970, 1971; Holevo,  1988, 1989; Prosperi ,  
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1987) [for applications of the formalism see Barchielli (1983, 1987, 1988, 
1990), Srinivas and Davies (1981, 1982), and Holevo (1982b)] and show 
how this can be applied to examples of macroscopic variables. I shall notice 
that, if, with a change of language such variables are understood as 
be-ables in the sense of BelCh[hat is, as having a well-defined value at any 
time), rather than aS-specifyiffg quantities continuously taken under obser- 
vation, the problem of an o~ojective macroscopic level of description of the 
physical world can be solved positively even in the context of quantum 
mechanics, by an explicit realization of the Ludwig program. Unfortu- 
nately, this solution cannot be considered satisfactory, since, at least for the 
simplest models we have been able to produce, it falls in conflict with basic 
conservation laws. 

In spite of the difficulties, I shall try to pursue the program explicitly 
to a certain extent on a simple model. Indeed, it develops completely in the 
framework of ordinary quantum mechanics and requires only a generaliza- 
tion of the concept of observable. I think it should have at least a 
pedagogic value. In the model the be-able shall be simply the density of 
particles, starting from which, however, the entire thermodynamics can be 
constructed in principle. A more sophisticated attempt is presented by Lanz 
elsewhere in these Proceedings. 

The discussion concerning the last subject, reported in Section 6, has  
not been published before; the rest of the paper is intended simply as an 
updating and an introduction to the work of Lanz and Barchielli. 

2. G E N E R A L  F O R M A L I S M  

In the general formulation of quantum mechanics mentioned above a 
set o f p  compatible quantities, abstractly denoted by A = (A1, A2 . . . .  , Ap), 
is associated to an effect-valued measure (e.v.m.) PA(T) on R p, and an 
apparatus SA for observing A to a similar operation-valued measure 
(o.v.m.) ~sA(T)  (in this connection the term instrument and the symbol 
J ( T )  are also frequently used). 

I recall that by the terms effect and operation we mean a bounded 
self-adjoint operator in the Hilbert space H with the property 

0 < P < T  (2.1) 

and a linear mapping of the space of the trace class operators T(H) into 
itself which is completely positive and trace decreasing, 

Tr(~',~) ~ Tr �9 (2.2) 

respectively. Similarly, by an e.v.m, and an o.v.m, we mean a mapping 
from the Borel sets B(R0 on R p into the family of the effects or of the 
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operations respectively, such that 

F ( j~ I  T j )=  J=,~" P(Tj) and ~ ( jQ~  T i )=  J=~ ~'(Tj) (2.3) 

for TinTj = ~ i f i # j .  
The specific e.v.m. Fa(T) and o.v.m..~s~(T) associated to A and SA 

must be supposed normalized, 

/CA(R" ) = I, T r  ~sA(RP)X --- Tr ~ (2.4) 

and related by the equation 

PA(T) ' ,r = : s a ( T )  (2.5) 

where : '  denotes the adjoint of : "  (remember that the dual space of T is 
the space B of the bounded operators in H), i.e., 

Tr(/C A (T)37) = Tr(~-SA (T)s (2.6) 

Obviously there are many o.v.m.'s corresponding to one e.v.m, by (2.5) or 
(2.6). This agrees with the fact that we may conceive many different kinds 
of apparatus SA for observing the same set of quantities A. 

In the Heisenberg picture we set 

fin(T, t) = eifttff a(T)e-illt  (2.7a) 

~ sA( T, t).~ = e'm[~sA ( T)(e -ia'~e~a')]e -~a, (2.7b) 

Then the probability of observing a set of values A e T by the apparatus SA 
at a time tl is assumed to be given by 

e ( A e T ,  ql W) -- Tr(FA(T, tl)ff') =Tr[~sA(T, h)ff'] (2.8) 

if" being the statistical (or density) operator representing the state of the 
system. Furthermore, if the result A ~ T has been actually found, the state 
of the system is modified in the following way: 

fir ~ ~sa (T, tl) ff'/Tr[~-sA (T, t,) ff'l (2.9) 

Obviously ordinary textbook quantum mechanics is recovered by 
requiring the e.v.m, tiM(T) be a projection valued measure. 

Note also that from equation (2.8) we obtain for the expectation 
values of the various A, 

(As > = Tr{Os(t) l~} (2.10) 

having set 

Os(t) = eia'Ose -ilCh and 0s = f d/c(x)xs (2.1 1) 



118 Prosperi 

So even in the present formulation a set of  symmetric (even if not 
necessarily self-adjoint) operators is associated to a set of compatible 
observables. There are, however, two important differences from the ordi- 
nary formulation: (a) in general the operators 01 . . . .  , Op do not commute 
with each other [in general f fA(T) f fa(S)  # ffA(S)ffA(T)]. (b) Since now the 
decomposition (2.11) is no longer unique, there are many e.v.m.'s, and so 
many different sets of  compatible observables A = (Am . . . .  , Ap) associated 
to the same set of  operators. Obviously all such sets correspond to a single 
set of  classical quantities. 

In some sense we could think of the above A1, � 9  Ap as correspond- 
ing to a kind of  simultaneous coarse-grained observation of the p commut- 
ing or noncommuiting quantities associated to 0~ . . . .  , 0  v in the ordinary 
formulation. 

3. THE PROCESS OF MEASUREMENT 

Let us now introduce explicitly in the treatment the apparatus by 
which a certain observation on the system is performed. 

We mean by apparatus a second system which interacts for a certain 
time with the object and which is affected by this interaction in an 
appreciable way. 

Denoting the object by I and the apparatus by II, we write the 
Hamiltonian of the compound system as 

/-I = B I  -1- B I I  "~ ~'Iint = /~0 "31- Bint (3.1) 

Then we can assimilate the interaction between I and II to a scattering 
process and assume that the limit 

lim etiot"e-ia(," - c) e -it~ot" = 0 (3.2) 
t"--* +cO, t''--~ --OO 

exists in the strong or in the weak sense. 
We denote by All the position of  an index or any other quantity by 

which we measure the modifications that occur in II and by P~(T)  the 
e.v.m, corresponding to A~I according to the rules of the preceding section. 
We also assume that II is in the state Wn and I in the state W~ before the 
interaction, that at the time to the interaction is finished, and that then the 
observation of All  is performed. We obtain 

P(AII ET , toIWIWII) = Tr[PI~(T, to)UWIWItU*] (3.3) 

where we have used the interaction picture, i.e., we have written 

ff~ (T, t) = exp(i/~n t) je~ (T) exp( - iHII t) 
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Taking into account the relation 

e-iao'O = Oe -iao' (3.4) 

which follows from equation (3.2), we can rewrite the right-hand side of  
equation (3.3) as 

P ( A l l f f T I W  I W I I  ) = TrS{ffg(T, t o ) l ~ l }  = P ( A ~ e T ,  to[Wi) (3.5) 

Here 

ff((T, to) = e iolt~ T r l l ' f  ISzS/2~176 --it~lltOI~'rl/2tn --i1~ltO (3.6) x t  ~vv Sl v t . ,  ~t l i \ ~ ] ~ . / c  vv IS ) ' u  

is obviously an e.v.m, and Tr, Tr I, and Tr I~ denote trace operations 
performed on H = H1 | H2, Hs, and H2 which are the Hilbert spaces of the 
compound system, of  system I alone, and of the system II alone, respec- 
tively. 

Equation (3.5) shows that the observation of the quantity An on II at 
time to after the interaction can be equivalently described as the observa- 
tion of  the quantity As on I corresponding to the e.v.m, fig(T) and 
essentially it proves the consistency of the postulates with a reasonable 
general characterization of  the apparatus. 

Note  that, even if P~(T)  is supposed to be a projection-valued 
measure, in general fig(T) turns out to be an effect-valued measure unless 
very special and unrealistic assumptions on 0 are done. 

Suppose we perform a second observation on I at a subsequent time t. 
If  we do not introduce the new apparatus explicitly in the treatment, we 
can write 

P(B~ eS, t; Ais ff T, tol WI WI1) = Tr{P~(S, t)P~(T, to)Oifs ifH 0 +} (3.7) 

for the joint probability of  observing Ai teT  at to and B~eS at t. Here B~ 
denotes the new observable and P~(S) the corresponding e.v.m.; we have 
taken into account the fact that P~(S, t) = exp(i/-Trd)re~(T) exp( - i l t~ t )  
commutes with ff~(T, to) even for t r to. 

Equation (3.7) can be rewritten in the form 

P(Bx eS, t; a~i eT, tolW~ Wn) = Tr~{P~(S, t)~-xa (T, to)ifi} (3.8) 

where 

i f (T ,  to)if~ = Trn{P~(T, to)Oifl ifll ~-~*} 
Trn{[/~A ( T, to)] 1/2 0 i f ~  2 ifi  Wl/2 0*[ffI~(T, to)] 1/2} (3.9) ~--- , r  II  

defines an o.v.m. Note that 

Pf(T,  to) = [o~g(T, t0)]'f (3.10) 
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Finally from equations (3.5) and (3.8) we obtain 

P(B~ ~S,  tlh~ ~T,  to; WI) = TrI{Ff(S' t)~aI (T'  t~ 
T r I { ~ ( T  ' t0) l~i } (3.11) 

for the probability of observing B~ ~ S at t conditioned by having observed 
A I ~ T  at to. 

Equation (3.11) shows that the reduction of the state can be quite 
naturally understood as a consequence of the application of the other 
postulates of quantum mechanics to the compound system I + II and loses 
much of  its striking peculiarities. Notice also that (3.6) and (3.9) provide 
explicit expressions for the e.v.m, and o.v.m, corresponding to a definite 
procedure in terms of the characteristics of the apparatus, once an appro- 
priate physical meaning has been attached to the formal observable An 
corresponding to ff~(T). 

Since in the above treatment II is described like I purely in terms of 
ordinary quantum mechanics, it is clear that even any statement on the 
apparatus has a meaning only with reference to an observer. What the 
discussion shows is that the borderline between the object and the observer 
can be shifted arbitrarily toward the observer. Von Neumann obtained the 
same result at the price of postulating the relation Ucpr @o = (P, @r, where 
the ePr'S and @r'S are the eigenstates of AI and An that are supposed to be 
set in one-one correspondence. But the assumption is clearly completely ad 
hoe and fictitious, in fact: (a) the interaction and so the operator ~ are not 
at our choice, (b) in the assumption only discrete spectrum quantities 
would be observable, and (c) even for discrete quantities significant exam- 
ples can be produced for which the relation cannot be exactly satisfied. On 
the contrary, as we have seen, no artificial hypothesis is necessary if the 
concept of observable is generalized to the e.v.m.'s. 

4. OBSERVATION OF THE COMPLETE HISTORY OF 
A SET OF QUANTITIES 

As a consequence of equations (2.8) and (2.9), the joint  probability of 
observing for A a sequence o f  results at certain subsequent times 
to < tl �9 �9 �9 tn can be written as 

P(A ~TN, tN; . . . ; A ~T1, tl; A ETo, tol W) 

= Tr[~sA(Tlv, t N ) ' ' "  ~sA(T , ,  t , )~sa(To,  to)lYe "] (4.1) 

which generalizes a well-known formula by Wigner. Notice that, setting 

~ ( T N ,  t u ; . . .  ; To, to) = ~ s a ( T u ,  tN) " " " ~sA(To, to) (4.2) 
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and 

F(TN,  tN; . . . ; To, to) = ~ ' ( T o ,  t o ) ' "  ~ ' sA(TN,  t N ) f  (4.3) 

we find that equation (4.1) takes the form 

P(A er~,  tN;. . .  ; A ~ro, tolW) 

= Tr[P(TN, t N ; . . .  ; r 0, to)fi r] 

= Tr[~'(TN, t u ; . . .  ; To, t0)fi r] (4.4) 

Since equations (4.4) obviously define an o.v.m, and e.v.m, on ~r pr o), 
a sequence of observations at subsequent times is treated on the same 
footing as a single observation at one time. 

This last circumstance is particularly interesting, since it suggests the 
possibility of  treating in a significant way the somehow limit situation of a 
system continuously kept under observation for a certain time interval. It 
is well known that such a limit situation would bring unavoidable para- 
doxes in the framework of ordinary textbook quantum mechanics. 

In order to achieve this aim we have to generalize the concepts of 
e.v.m, and o.v.m, replacing the space R e of the possible values for a set of 
quantities at a definite time by the functional space Y of  the possible 
complete histories x(t)  - (xa(O . . . . .  x"(t))  for a similar set of quantities in 
an entire time interval (6, t / ) .  Correspondingly, we have also to replace the 
class ~ ( R  p) of subsets of  R e by an appropriate a-algebra of subsets of  Y. 
For this purpose we find it convenient to set 6 = - o r ,  t / =  + ~ and to 
identify Y with the Cartesian product E ' =  ~ ' x . . .  x ~"  of  n identical 
factors ~ ' ,  ~ '  being the space of  the Schwarz ordinary distributions. Note 
that E' is the dual space of  E = ~ x �9 �9 �9 x ~ ,  ~ being the space of the 
infinitely differentiable functions with compact support in R. 

For any given element h(0 = ( h i ( t ) , . . . ,  h2(t)) of E and any trajectory 
x(0 r  we may define the time average 

xh = .I dt hs(t)xS(t) (4.5) 

This quantity can also be assumed as a coordinate which partially specifies 
the trajectory. I f  we choose l different linearly independent elements of 
E, h ~ . . . . .  h r176 we may introduce I different coordinates x m , ,  �9 �9 �9 xho) for 
x(t) and correspondingly consider the subset of E', 

C(h 0) . . . . .  h~ Bl) = {x(t)EE': (xho) . . . . .  Xhr EBt} (4.6) 

Bt is a Borel set in W. The subsets of  the form (4.6) for any choice of I, B t, 
and h ~ . . . ,  h ~~ are called cylinder sets. They generate a a-algebra which 
we shall denote by Y.; furthermore, we shall denote by Y.tt~ the a-algebra 
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generated by the cylinder sets for which h (1) . . . . .  h (t) have support in the 
interval (to, 6). 

Then to the continuous observation of a set of  quantities we associate 
a mathematical structure which we call a operation-valued stochastic process 
(OVSP) and denote by 

{E', Ztt~,, ~( t , ,  to;. )} 

Such a structure is defined in the following way. 
1. For any time interval (to, tl) an o.v.m. ~ ( q ,  to; M) and a related 

e.v.m. F(q, to; M) = ~- '(f i ,  to; M ) / a r e  given on Zt~ and the probability of 
observing a result x( t )~M is expressed by 

P(MIW, to) = Tr[F(t,, to; M)ff ' ]  = Tr[~(f i ,  to; M) if"] (4.7) 

if the system is prepared in the state W before the time to. 
2. The composition law [cf. equation (4.2)] 

~-(t2, to; N n M )  = ~-(t2, q; N ) ~ ( t l ,  to; M) (4.8) 

t 2 holds for M e Z ~  and NeEd] (note that Nc~M ~ Zto)- 
3. The conditional probability of  finding x(t)eZ',] if x(t)eMeZtt~ has 

been observed is given by [cf. equation (3.11)] 

P(N]M; W, to) = Tr[ff(t2, tl ; U ) ~ ( q ,  to; M)ff']/Tr[~r(t,, to; M)I~] (4.9) 

4. The time translation equation [cf. equation (2.7b)] 

~(t l  + z, to + z; M~).~ = eia~[~(q, to; M)(e-'m.s -ira (4.10) 

holds, where M~ = {x(t); x(t) = x'(t - z), x '( t)~M}. 
5. ~-(tl,  to; M) is normalized; i.e., if we set f#(fi, to) = ~ ( f i ,  to; E'), 

the equation 

Tr[ff(q, to))?] = Tr .~ (4.11) 

holds. 
Note that if we put M = E' in equation (4.9), by equation (4.11) we 

have 

P(NIE'; W, to) = Tr[/~(t2, tl; N)ff(tl,/o)l~] (4.12) 

So the mapping if(t1, to) describes the modification produced on the state 
of the system by the action of the apparatus when no notice is taken of the 
result; briefly it describes the disturbance by the apparatus. 
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5. CHARACTERISTIC FUNCTIONAL,  POISSONIAN AND 
GAUSSIAN OVSP 

In the preceding section we have introduced a formalism for treating 
continuous observations on an axiomatic basis. It remains to show that an 
object if(t1, to; M)  satisfying all the requirements we have introduced 
actually exists and to produce significant examples. 

For this purpose we find it convenient to introduce the characteristic 
functional related to the probability distribution defined by equation (4.7). 
We set 

; { i  t } L(tl, to; [~(t)l IW) = dP([x(t)] IW, to) exp i dt ~(t)xS(t) (5.1) 
0 

for any ~(t)eE. Such a quantity has the following important properties: 
1. Positivity [it follows by the positivity of  P(M I Wto)], 

c*L(t,, to; [~(/)(t) - ~(J)(t)] [W)9 -> 0 (5.2) 
/ J  

for any choice of  the test functions ~(l)(t), ~(2)(t) . . . .  and of  the complex 
numbers Cl, c2, . . . .  

2. Normalization [it follows by (4.11)] 

L(t~, to; 01W ) = 1 (5.3) 

A general theorem (Milnos' Theorem) in the theory of  the so-called 
generalized stochastic process states that conversely if a functional 
L(h, to; [~(t)] [W) satisfies (5.2), (5.3), and certain regularity conditions, it 
is the characteristic functional of a probability distribution P(M[ W; to). In 
practice, first we construct the probability density for the quantities 
X h ( l ) ,  . . . , Xh(l ) as 

P(Xl, h(l); . . .  ; Xl, h(t)[Wto) 

= l ( 2 ~ z ) , f d k l . . . d k t e x p (  -ij=~ 

J dP([x(t)] lW, to)f(x 1 -xho)) " " 6(xt - xh~,)) (5.4) 

Then we obtain the probability for a cylinder set P(C(h ~ �9 �9 h(t); Bt)[Wto) 
and finally we extend it to the entire E',l. 

Mimicking the above procedure, we may define a characteristic func- 
tional operator (CFO) 

fg(tl,to;[~(t)])= fd~( t l ,  to;[X(t)])exp{i fi~dt~s(t)xS(t) } (5.5) 
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which is related to L by the equation 

L(t~, to; [~(t)] [W) = Tr{fg(tl, to; [~(t)])ff'} 

and which has the following properties: 

(5.6) 

c*fg(t,, to; [~t~ - ~(J)(t)])cj: completely positive (5.7) 
U 

f~(tl, to; 0) = ~-(tl, to; E') = fg(tj, to): trace preserving (5.8) 

which correspond to (5.2) and (5.3). 
Furthermore, if ~( t )  and ~2(t) are two elements of E with support in 

(to, t~) and (t~, t2), respectively, from equation (4.8) we have 

fq(t2, to; [~l(0 + ~2(t)]) = (g(t2, tl; [~2(t)])fg(tl, to; [~l (t)]) (5.9) 

while a time translation equation similar to (4.10) can be written also for 
fg. 

Then, if we have a mapping (#(tl, to; [r in T(H) satisfying (5.7)-  
(5.9) and the time translation equation, an associated ~'(t~, to; M) with all 
the required properties can be constructed starting from the operatorial 
equation corresponding to equation (5.4). The problem of  constructing on 
OVSP is thus reduced to the simpler problem of constructing a characteris- 
tic functional operator. 

In order to solve the last problem let us introduce two additional 
hypotheses (which obviously amount to restricting the class of  CFO we are 
able to take into consideration). First we assume that fg(t~, to; [~]) can be 
extended to functions not vanishing at to and tl; then, for any ~(t)~E, 
equation (5.9) can be written as 

fg(t2, to; [r = fg(t2, t, ; [r to; [~(t)]) (5.10) 

Furthermore, we assume that (5.10) can be put in the differential form 

d 
3~ f~(t, to; [r = X ( t ;  ~(t))fg(t, to; [~(z)]) (5.11) 

from which fg(tl, to; [~(t)]) can be reobtained as 

fg(t,, to; [~(t)]) = T exp dt a~"(t; ~(t)) (5.12) 
0 

T denoting the time ordering prescription. 
The problem is now to characterize the class of the operators 

~f'(t; ~(t)) for which ff(t~, to; [~(t)]) as given by (5.12) satisfies (5.7) and 
(5.8). We are not able to solve this problem in full generality, but we can 
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produce an already interesting subclass for which the above conditions are 
met. 

First let us set r = 0 in (5.11). Then we obtain 

0 
~t ~(t ,  to) = ~( t ) f f ( t ,  to) (5.13) 

with ~ ( t )  = ~C(t; 0) and we must find under what assumptions on L~(t) the 
mapping (#(t, to) defined by (5.13) turns out to be completely positive and 
trace preserving [cf. (5.8)]. This last problem has been studied in a different 
context (Gorini et al., 1976; Lindblad, 1976). It is found that, if ~e(t) is 
bounded, it must be of the form 

1 Q Q 
Aa(t))( = -- i[/('(t), )(] -- ~ j~l'= [/~* (t)/~j (t), X'] + -t- j=l  ~ /~j (t)X/~* (t) (5.14) 

wi th / ( ( t )  = K*(t) and /~l(t), R2(t) . . . .  bounded operators. If Le(0 is not 
bounded, equation (5.14) (with / ~ , / ~ , . . .  not bounded) turns out to be 
still a sufficient condition in order that (q(t, to) has the two required 
properties (apart from some pathological cases). Once (5.14) has been 
assumed, it can be shown that even (5.7) is satisfied if in turn ~r(t, r is 
assumed to be of the form 

P 

a~f'(t, ~(t))g = ~a(t))( + ~ (e"=} es(0 -- l)/~j(t)X/~* (t) 
j = l  

+ 
Q 

E 
j = P + I  

{ict} r (t)[/~j (t))( + .Y/~* (t)] 

_ 1[~} ~s (t)] 2 ~ }  + ifl ses (t).Y (5.15) 

(where ~1, �9 �9 �9 au, fl are arbitrary vectors in R"). This last result has been 
obtained in the above generality using techniques developed in the so-called 
quantum stochastic calculus (Barchielli and Lupieri, 1985, 1986). 

For the sake of analogy with the numerical stochastic process and for 
reasons which shall be apparent in a moment, the second term in (5.15) is 
said to be the Poissonian term, while the third one is said to be the Gaussian 
term. 

Notice finally that / ( ( t ) , /~l( t )  . . . .  must be simply Heisenberg opera- 
tors /~( t )= exp(i/tt)J~ e x p ( -  iIlt), etc., in order for the time translation 
prescription to be satisfied. Fur thermore , / (  itself can be often reabsorbed 
in a redefinition o f / t  and without loss of generality can be assumed to 
vanish. 
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Let us now try to understand the meaning of the result we have 
obtained. Notice that from (5.1) it follows that 

_ . ,  ~IL(t~, to; [r ]W) 
(x~'(t~l))x~2(t~2)) " . .  x~'( tq)))  - ( - - t )  6 ~ j  - :-6"~st(-'~) r (5.16) 

Then, combining such an equation with (5.6) and (5.12), we obtain in 
particular 

( x ' ( t ) )  = - i Tr~ 0~r '~r to)if" } r = o = Tr{OS(t)fg(t,  to)Ig I} (5.17) 

with 
P Q 

~j Rj & + Z ~; (RJ + R?) + ~ (5.18) 
j = l  j = P + I  

Equation (5.18) is analogous to equation (2.10) and qualifies our OVSP as 
corresponding to a (coarse-grained) continuous observation of  the set of  
quantities related to the operators 01, 0 2 . . . .  , &.  Notice, however, that 
we can write similarly 

(xS( t )x~ ' ( t ' ) )  

~" f6 zX(t' 6-~-~-~ 6 r to) i,~ 1 = 6( t  - t ')  . r ) -  fg(t, 
~=0 

~. (6~/g(t, 6;~ff(t', 4) fg(t', to)if'} + O(t - t ') t r ~  6~ s r ~( t ,  t ') ~ .  r =o 

.,. f a ~ ( t ' ,  0 ., 6o'~('(t, }l  
+ O(t" -- t) l r ~  - ~  fg(t', t) 6{ s 4) fr to)if" r = 0 (5.19) 

and the occurrence of  the 6(t - t ') in the first term of such an equation 
shows that only time averages of the kind defined by (4.5) have an actual 
meaning and that for nonsufficiently smooth weight functions the expected 
fluctuations are very large. 

Notice also that in the pure Poissonian case P = Q the operators 0 ' ,  
as defined by (5.18), are positive definite, while in the Gaussian case they 
can have a priori eigenvalues with both signs. 

6. A SIMPLE MODEL FOR THE CHOICE OF THE 
MACROSCOPIC VARIABLES 

Let us try to apply the above formalism to the macroscopic description 
of a large body. For simplicity let us consider a system of identical particles 
with a strictly local interaction. 
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We can use the formalism of the second quantization, characterized by 
�9 the Hamiltonian 

+ 7 (x, t)~p*(x, t)~(x, t)~b(x, t ) /  

(6.1) 

and the commutat ion relations 

[~(x, t), ~(X', t)]_+ = [~b*(X, t), ~*(X', /)]+ = 0 

[~(x, t), q/*(x', t)]+ = 63(x - x') 
(6.2) 

The simplest quantity that  can be used for a specification of the macro- 
scopic status of the system is the density of particles n(x, t). We shall 
associate the macroscopic density to the purely Poissonian OVSP defined 
by the CFO [cf. (5.15)] 

ff{'(t, ~) = ~ .fd3x {e(i/~)~(x)~l(x, t).  ~/*(x, t) 

-- �89 Off(x, t), .]+ ) (6.3) 

In fact we have 

and 

.f6Jc(t,O ' T= q,*(x, t)q,(x, t) r~(x, t) = - t ~  t) Jr (6.4) 

(n(x, t ) )  = Tr{$*(x,  t)~(x, t)fq(t, to)l~ } (6.5) 

Then we can study the conservation properties of n for the time 

0__~r~ + 0ka~ = 0 (6.6) 
0t 

i 
a~(x, t) = -2-mm (~*Ok~ -- Ok~b*ql) (6.7) 

we have 

0(n(x,  t))  = Tr~'0t~(x, t) Of~(t, to) f f ' t  
0t ~ 0t f#(t, to)I 'V+~(x, t) 0-----~-- 

J 

= - O k  (Jk(X, t))oM + Tr{~(x, t)~(t)~(t,  to)if" ) (6.8) 

where 

evolution statistically implied by (6.3). Using the usual operatorial equa- 
tion 
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Finally, taking into account that 

_t'd3x'{$*(x ', t)r t)~k(x, t)r t) s t) 

- �89 t)~(x',  t), r  t)r  t)]+ } 
= -- y~(x, t) 

we obtain 

having set 

(6.9) 

We have 

(Jk >QM = Tr{Lf#(t, to)#} (6.1 I) 

Notice that equation (6. I I) provides the most direct analog of the ordinary 
quantum mechanical expectation value (obviously (n) = (n)QM). 

Equation (6.10) shows that the expectation value of the number of 
particles is not conserved in the present formalism and for the chosen 
OVSP; the decay time is z = 1/y. 

Formally similar equations can be written for the energy density 

= ~mm OkO*OkO + ~k*O*~O~b (6.12) 

and for the momentum density 

i 
gk = - 2  (~k*Okr -- Ok~k*~k) (6.13) 

d, (gk )QM + Oh (Thk )QM = --~'(gk )QM 
(6.14) 

O, (w>QM + Oh (Sh >Q~ ----- --~,(W)Q~ 

where Tkk and Sk denote the usual momentum tensor and energy current, 
and the expectation values are defined directly as in (6.1 I) without intro- 
ducing new quantities in the form of the OVSP. In this sense even the 
energy and the momentum are not conserved, the decay time being the 
same as for the number of  particles. 

Let us try to understand how important the above dissipative terms 
might be, that is, how large z can be assumed. 

For t ' ,-, t the analog of (5.19) can be written 

(n(x, t)n(x', t ' ) )  = 16(t  -- t')tSa(x - -x ' ) (n(x ,  t ) )  + (n(x, t)n(x', t'))OM 

(6.15) 

O(n> 
O----t-- + Ok (Jk)QM = - -y(n)  (6.10) 
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Denoting by a an average of n(x, t) over a small volume AV and a small 
interval of time At, we obtain from the above equation 

1 1 
</~2> = _ _  (/~> "JI- < n 2 ) Q  i (6.16) 

A V A t  

In order that the macroscopic fluctuation remain small it is necessary that 
the first term in (6.16) is small with respect to ~2 for typical values of ri; 
that is, 

1 
z - - ~ F~AVAt (6.17) 

Since for a gas in ordinary conditions we have n ~ 3 x 1019 cm -3, it is clear 
that �9 must be small with respect to 1019 sec  ( t o  be compared with the life 
time of  the universe, of the order of 1017 sec). 

The above value seems to be too small to take the model seriously at 
a cosmological time scale. On ordinary time scales, however, we can 
assume consistently that the right-hand sides of (6.10) and (6.14) are 
negligible and we can use such equations as a starting point for the 
construction of thermodynamics. According to a usual strategy in nonequi- 
librium statistical mechanics, we can define a field of velocity Vk(X, t), a 
pressure tensor P~,, a density of internal energy u, and a heat current qk by 

nmvk = m (Jk )QM = (gk )QM 

(Thk)QM = nmVhVk + Phk, (W)Q M = lnmv2 (6.18) 

(Sk  )QM = ( lnml;2 + U)Vk + PkhVh + qk 

and then, using the thermal state equation u = u(n, T), try to reexpress Phk 
in terms of n, v k, and the temperature T by means of appropriate 
approximations (including the possibility of neglecting the fluctuations of 
the considered quantities). 

The interesting aspect with respect to the usual formalism is that now 
the basic macroscopic quantity n(x, t), from which all others have been 
derived, can be thought of as having well-defined values for any x and any 
t, even if the theory makes only statistical predictions. 

The model can be immediately extended to the case of various types of 
particles and so made more realistic. Even the assumption of a strictly local 
interaction is obviously not essential, if the various densities introduced are 
replaced by appropriate space smearings. On the contrary, a direct rela- 
tivistic generalization does not seem possible. For instance, in the case of 
f_ermions, the relativistic scalar most analogous to n would be the quantity 
$~b, which can be interpreted as the difference between the density of 
particles and of antiparticles in the CM. However, ~b$ is not positive 
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definite and cannot correspond to a Poissonian OVSP; indeed, if we try to 
generalize (6.1) replacing ~k* with ~k, we would not obtain a positive 
generator. 

7. CONCLUDING REMARKS 

In conclusion, the effect-operation formalism satisfies exactly the von 
Neumann consistency requirement on the shift of the borderline between 
object and apparatus. However, it does not allow one to eliminate such a 
borderline and can be applied only to intervals of time that have to be fixed 
a priori in some way. An important consequence of the above circum- 
stances is that quantum mechanics cannot be applied consistently to the 
entire universe even in this more sophisticated formulation. 

On the contrary, the model considered in Section 6 shows that in the 
formalism of the OVSP it is possible to introduce some basic macroscopic 
quantities as "be-ables," that is, as having well-defined values at any place 
and at any time. Then one can identify the system II of Section 3 with an 
appropriate large body described in terms, e.g., of the densities nl, n2 . . . .  
of its various components (e.g., electrons and various types of nuclei) and 
replace the o.v.m. ~ by the OVSP of the model, the interaction with I 
resulting in a modification of the values of nt, n2 . . . . .  Obviously, interme- 
diate microscopic systems between I and II can be considered, but, once the 
level of the macroscopic description is reached in the von Neumann shift, 
the explicit reference to the observer is no longer necessary. We can talk in 
terms of objective events and in particular the application of the theory to 
the entire universe no longer raises difficulties. Naturally in this view the 
choice of the basic quantities relative to the large system cannot be 
arbitrary, but it should be prescribed by an appropriate postulate to be 
considered a part of the theory and ~ should be a new fundamental 
constant. 

As we have seen, the price one has to pay for the above result is a 
violation of the conservation laws, which does not seem acceptable on a 
large scale of time. Furthermore, an immediate relativistic generalization 
does not seem possible [for an example of a relativistic extension of the 
OVSP formalism in the Gaussian case see Barchielli et al. (1984)]. In spite 
of this I think the model can be interesting for the illustration of a possible 
philosophy in approaching the problem of measurement in quantum me- 
chanics. 
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